
CUTTING A SQUARE INTO SMALLER SQUARES

MICHAEL LOGAL

In math club one day, we did an activity on cutting up a square (WLOG a 1 × 1 square) exactly into smaller squares, not
necessarily different or the same size. The goal was to find the values of n > 0 such that it was possible to cut the original
square into exactly n smaller squares. This problem is one that I saw on NumberPhile one day, so I won’t explain the solution.
Instead, I will link to the video at the bottom.

As everybody was working on this problem, one of the members brought up a new question: how many ways could it be
done for the possible n’s? We called this f (n) and constructed the table

n 1 2 3 5 else
f (n) 1 0 0 0 ≥ 1

Then we started constructing arguments for n = 4 and n = 6.

Proposition 0.1. The value f (4) = 1.

Proof. Each of the 4 small squares must occupy its own corner on the big square. Since the total area is 1, there must be one
square with area between 1

4 and 1, so it has side length 1
2 ≤ x ≤ 1. The remaining squares must be at most 1− x to also fit in

the 1× 1 square. The total area is at most

x2 + 3 (1− x)
2
= 4x2 − 6x+ 3

Setting the area equal to 1, we find x = 1
2 or x = 1. Clearly if x = 1, there is no room for the other 3 squares, so x = 1

2 is the
only solution. This gives the expected answer of 1 solution that is

□

Proposition 0.2. The value f (6) = 1.

Proof. Let the large square be ABCD. Like before, we need 4 of the small squares to occupy corners. Suppose these have
side lengths a, b, c, d on corners A,B,C,D, respectively. Since we only have 2 additional squares, we can say 2 of the edges
must be complete with a, b, c, d. This makes 2 cases: the completed edges are opposite each other or adjacent. We cover the
opposite case first.

WLOG, let a+ b = c+ d = 1 to complete the edges AB and CD. Then one of a, b is at least 1
2 and one of c, d is at least

1
2 . However, these squares overlap unless a = b = c = d = 1

2 , but then there is no room for the remaining 2 squares. Thus
the completed edges must be adjacent.

WLOG, let a+ b = a+ d = 1 to complete the edges AB and AD. Like before, either a ≥ 1
2 or b = d > 1

2 . In the second
case, the squares overlap, so we have a ≥ 1

2 . The remaining squares have side lengths 1 − c − b and 1 − c − d, but since
b = d = 1 − a, these values are both x = a − c. Note that in order to fit, we have c ≤ 1 − a and x = a − c ≤ 1 − a. We
rearrange these to get 2a − 1 ≤ c ≤ 1 − a, so a ≤ 2

3 . Also, if x > c, then the last 2 squares overlap, so x = a − c ≤ c, i.e.,
c ≥ 1

2a. The total area is

a2 + 2 (1− a)
2
+ c2 + 2 (a− c)

2

We claim under our conditions, the maximum area is 1 and we solve for this maximum. This equation for area has a maximum
in c at either boundary point c = 1

2a or c = 1 − a. In the first case, we use the boundary points a = 1
2 and a = 2

3 to get the
maximum area is 1 at a = 2

3 , c = 1
3 , corresponding to the solution
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In the other case, we use the same method to get the maximum area 1 as a repeat solution and a = c = 1
2 . In the second case,

however, x = 0 and the solution is degenerate. Thus f (6) = 1. □

One might wonder if the values of f are always 0 or 1, but this is quickly disproven, as f (7) ≥ 2 shown by

What is f (7)? I don’t know. But this seems like a good time to update our table:
n 1 2 3 4 5 6 7 else

f (n) 1 0 0 1 0 1 ≥ 2 ≥ 1

With more squares, the arguments are only going to get longer and we won’t be able to argue about n → ∞, so let’s look
for a different setup for the problem. Suppose we are given an arrangement of squares and we are tasked with finding the sizes
of the small squares. Let’s work through the example

x1

x2

x4

x3

x5 x6

x8 x9

x7

where the xn represents the side length. We start analyzing the possible horizontal lines through this square starting at the
bottom. We have the equation

x1 + x2 = 1

Once our horizontal line reaches the end of square x1, we get a new equation

x4 + x3 + x2 = 1

We can see that doing this will give us one new equation every time we reach the end of a square, almost. We could run into
an issue with the end of square x2 because it is the same as the square x4. However, this fact gives us enough information to
construct a new equation: since the squares ended at the same location, we have the equation from the vertical positions:

x3 + x1 = x2
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We continue this pattern to get the rest of the equations:

x4 + x5 + x6 + x7 =1

x4 + x1 =x5 + x3 + x1

x5 + x3 + x1 =x6 + x2

x8 + x9 + x7 =1

x8 + x4 + x1 =x9 + x5 + x3 + x1

x9 + x5 + x3 + x1 =x7 + x2

and reach the top of the square. Putting these linear equations in matrix form, we have

1 1 0 0 0 0 0 0 0
0 1 1 1 0 0 0 0 0
1 −1 1 0 0 0 0 0 0
0 0 0 1 1 1 1 0 0
0 0 −1 1 −1 0 0 0 0
1 −1 1 0 1 −1 0 0 0
0 0 0 0 0 0 1 1 1
0 0 −1 1 −1 0 0 1 −1
1 −1 1 0 1 0 −1 0 1





x1

x2

x3

x4

x5

x6

x7

x8

x9


=



1
1
0
1
0
0
1
0
0


Letting A be the square matrix, X the column vector of xn’s, and B the right column vector, we solve and find

X = A−1B = (3/7, 4/7, 1/7, 2/7, 1/7, 1/7, 3/7, 2/7, 2/7)
T

The horizontal sums and vertical sums must be linearly independent, so A will always be invertible. We can also do better
with restricting A. Take a row with −1 such as x3 + x1 = x2. This came from equating vertical lines. If we extend one
vertical line, then we have

x1 + x3 + x5 + x9 = 1 = x2 + x5 + x9

One of the equalities to 1 is linearly independent from the rest of the rows of A, so we can rewrite A using the new equation.
This produces a system AX = B where A is a {0, 1} matrix and B is the column vector of 1’s. Solving X = A−1B gives a
finite, albeit large number of possibilities for X . We can extend this to a nice proposition:

Proposition 0.3. For any n, f (n) is finite. In particular, it is bounded by 2n
2

n!

Proof. Any geometric construction has a system that arises as in the previous paragraphs. There are at most 2n
2

possible
matrices for A. Choosing a general ordering to placing the squares geometrically (such as sorted by x-coordinate, then
y-coordinate) gives at most 2n

2

n! geometric arrangements. □

The upper bound provided in the proposition leaves much to be desired. At n = 6, for example, 26
2

6! = 49478023249920,
which is a bit more than the proven value f (6) = 2.

We can try getting as much information as possible from this system. Since

det (A)A−1

is an integer matrix, so must
det (A)X =

(
det (A)A−1

)
B

so we can deduce that the maximum possible denominator for a value in X is det (A). What is a bound on det (A), then?
Results on an almost identical problem, Hadamard’s Maximal Determinant Problem, and a connection to this one show

det (A) ≤ (n+ 1)
(n+1)/2

2n

Before we put up our hat because this is current research by the top mathematicians, we can make one more appeal to geometry.
We still have not used the facts that

|X|2 = x2
1 + x2

2 + · · ·+ x2
n = 1

and each xi > 0. We put these equations into a single statement.

Problem 0.1. Suppose the following for matrices A,X,B

• A ∈ {0, 1}n×n

• X = (x1, · · · , xn)
T with each xi > 0
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• B = (1, · · · , 1)T

• |X| = 1

What are the possible values for det (A)?
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